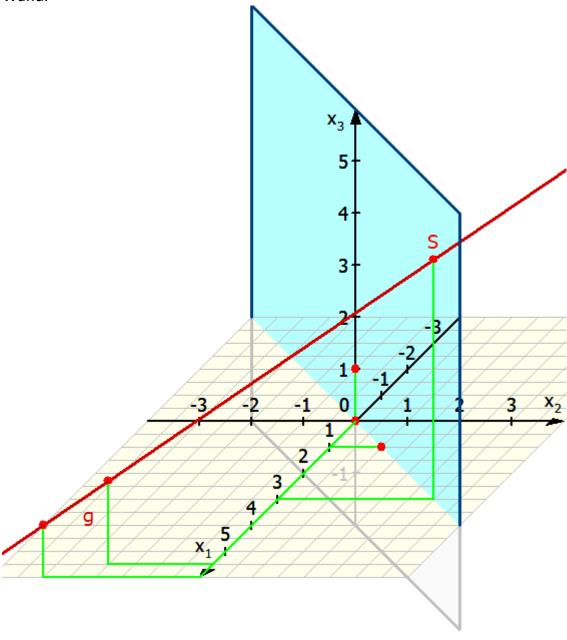
A.Schiffler

Der Schnittpunkt einer Geraden mit einer Ebene



Seite 1 von 4

Gegeben ist die Gerade
$$\vec{g} = \begin{pmatrix} 6 \\ -3 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} -0.5 \\ 1 \\ 0.6 \end{pmatrix}$$
 und die Ebene E: $x_1 = x_2$

Bestimmen den Schnittpunkt der Geraden mit dieser Ebene.

Zunächst schauen wir uns das einmal an. Die Gerade ist in der Farbe Rot eingezeichnet. Die Ebene ist hellblau eingezeichnet. Für jeden Punkt in der Ebene gilt, dass seine x_1 - und seine x_2 -Koordinate identisch sind, die x_3 -Koordinate ist beliebig. So ergibt sich diese senkrechte Wand.

A.Schiffler

Der Schnittpunkt einer Geraden mit einer Ebene

Seite 2 von 4

Das ist die Gleichung der Ebene E: $x_1 = x_2$

Das ist die Geradengleichung:
$$\vec{g} = \begin{pmatrix} 6 \\ -3 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} -0.5 \\ 1 \\ 0.6 \end{pmatrix}$$

Es ist also die erste Koordinate der Geraden: $x_1 = 6 - 0.5t$ Es ist also die zweite Koordinate der Geraden: $x_2 = -3 + t$

Wir ersetzen nun also x_1 und x_2 in der Ebenengleichung $x_1 = x_2$ und lösen dann diese Gleichung nach t auf.

$$6 - 0.5t = -3 + t$$
 | + 0.5t + 3
9 = 1.5t | : 1.5
t = 6

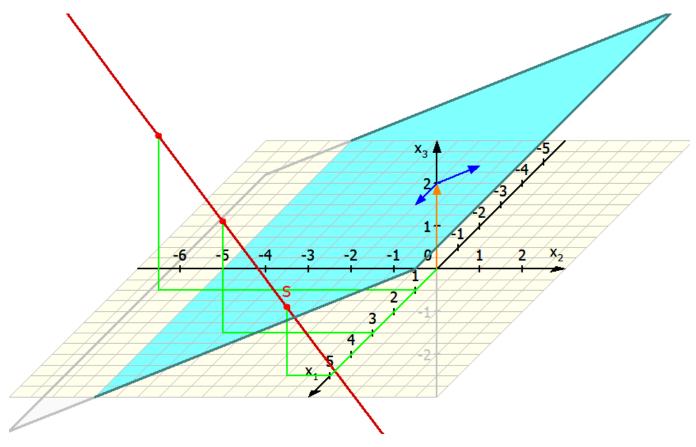
Nun setzt du t = 6 in die Geradengleichung ein:
$$\vec{s} = \begin{pmatrix} 6 \\ -3 \\ 1 \end{pmatrix} + 6 \cdot \begin{pmatrix} -0.5 \\ 1 \\ 0.6 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 4.6 \end{pmatrix}$$
 Die Gerade schneidet of im Punkt S(3 | 3 | 4,6)

Die Gerade schneidet die Ebene

Dieser Schnittpunkt S ist eingezeichnet (siehe Bild auf vorheriger Seite).

A.Schiffler

Der Schnittpunkt einer Geraden mit einer Ebene



Seite 3 von 4

Gegeben ist die Gerade
$$\vec{g} = \begin{pmatrix} 1 \\ -6 \\ 3,6 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ 2,5 \\ -1 \end{pmatrix}$$
 und die Ebene E: $x_3 = 0.4x_2 + 2$

Bestimmen den Schnittpunkt der Geraden mit dieser Ebene.

Zunächst schauen wir uns das einmal an. Die Gerade ist in der Farbe Rot eingezeichnet. Die Ebene ist hellblau eingezeichnet. Diese Ebene kann anstatt in Koordinatendarstellung auch mit Hilfe eines Stützvektors und zwei Richtungsvektoren beschrieben werden. Der Stützvektor hat die Farbe Orange und die Richtungsvektoren sind dunkelblau dargestellt

Von der Seite sieht diese Ebene so aus:

Die x_1 -Achse zeigt direkt auf den Betrachter. Die Ebene x_3 = 0 wird bei x_2 = 5 geschnitten. Die Ebene x_2 = 0 wird bei x_3 = 2 geschnitten.

Der Schnittpunkt einer Geraden mit einer Ebene

Das ist die Gleichung der Ebene E: $x_3 = 0.4x_2 + 2$

Das ist die Geradengleichung:
$$\vec{g} = \begin{pmatrix} 1 \\ -6 \\ 3, 6 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ 2, 5 \\ -1 \end{pmatrix}$$

Es ist also die zweite Koordinate der Geraden: $x_2 = -6 + 2.5t$ Es ist also die dritte Koordinate der Geraden: $x_3 = 3.6 - t$

Wir ersetzen nun also x_3 und x_2 in der Ebenengleichung x_3 = 0,4 x_2 + 2 und lösen dann diese Gleichung nach t auf.

$$3,6-t=0,4 \cdot (-6+2,5t)+2$$
 | T
 $3,6-t=-2,4+t+2$ | +t+0,4
 $4=2t$ | : 2
 $t=2$

Nun setzt du t = 2 in die Geradengleichung ein:
$$\vec{s} = \begin{pmatrix} 1 \\ -6 \\ 3,6 \end{pmatrix} + 2 \cdot \begin{pmatrix} 2 \\ 2,5 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ -1 \\ 1,6 \end{pmatrix}$$
 Die Gerade schneidet di im Punkt **S(5 | -1 | 1,6)**

Die Gerade schneidet die Ebene

Dieser Schnittpunkt S ist eingezeichnet (siehe Bild auf vorheriger Seite).